

Windows Firewall Rules and MSIX Packages
A research paper by Timothy Mangan

February 15, 2026

Timothy Mangan

TMurgent Technologies, LLP

Introduc�on

The Windows Firewall controls traffic into and out of the opera$ng system, using a set of OS wide, and

Applica$on specific rules. The firewall is controlled by a combina$on of (group) policy based rules and

locally set policies, and local rules.

O+en, vendor applica$ons that use a specific IP port or ports, will add local applica$on-specific rules as

part of the installa$on of the applica$on. These rules are added by the applica$on installer so+ware,

using one of several APIs available to them. By adding the rule locally, they ensure that their applica$on

will not be blocked.

IT Organiza$ons some$mes like to control the rules used by the firewall by se2ng them via group policy,

but in reality are se2ng some via group policy and allowing the applica$on installers to add to them out

of convenience.

MSIX packages also may include firewall rules to be applied to the system, as part of the AppXMannifest

file. This allows for the rule to correctly target the executable in the package, which may poten$ally be

installed in different loca$ons on different systems, due to the controls available to support mul$ple

namespace Volumes for the packaged product installa$ons.

For applica$ons where the installer adds firewall rules using the available installer APIs, when

recapturing the installa$on using the Microso+ MSIX Packaging Tool (MMPT), these rules end up being

filtered out automa$cally and not brought along into the package.

Meanwhile, we see vendors releasing MSIX packages produced directly that include the firewall rules in

their AppXManifest files.

In this paper, I look at new tooling op$ons to help IT organiza$ons deal with firewall rules in MSIX

packages, whether from their own repackaging efforts or is intake of vendor supplied packages, whether

they want these rules in the packages or want to remove them. Ul$mately we see that the enterprise

organiza$on wants to be aware of vendor firewall rules, and then:

• Ensure they are part of the package.

• Ensure they are removed from the package so that they control them via central policy.

In this paper, you will find out how to do either of these.

About Firewall Rules

Applica$on installers have several op$ons to add the firewall rules.

1. netsh advfirewall add rule

netsh advfirewall firewall add rule name="My App" dir=in ac$on=allow

program="C:\MyApp\app.exe" enable=yes

Documenta$on link here.

2. New-NetFirewallRule

New-NetFirewallRule -DisplayName "Allow Messenger" `

 -Direc$on Inbound `

 -Program "C:\Program Files (x86)\Messenger\msmsgs.exe" `

 -RemoteAddress LocalSubnet -Ac$on Allow

Documenta$on link here.

3. Programma�cally using a COM interfaced exposed by FirewallAPI.dll

In an MSI install package this would be part of a custom ac$on.

No maCer which API used, these rules are ul$mately wriCen to the Windows Registry as seen in this

example from the DiCo installer:

There is also a SharedAccess\Defaults key that will contain rules that are not applica$on-specific.

About MSIX AppXManifest and Firewall Rules

Microso+ extended the AppXManifest schemas to allow for the inclusion of firewall rules with the

Desktop2 schema extension. This extension is implemented on all currently supported versions of the

OS.

The schema implementa$on uses a package-level extension in the AppXManifest, where rules targe$ng

the rela$ve path to exe files within the package are targeted.

It starts with a package extension using Desktop2:Extension with a Category parameter of

“windows.firewallRules”. Under that extension element is a Desktop2:FirewallRules sub-element that

has an Executable parameter that iden$fies the rela$ve path to the exe file in the package. That sub-

element will then have its own sub-elements of type Desktop2:Rule that have the individual rules.

Here is an example by the vendor package from DuckDuckGo published in the Winget repository:

Note that the windows firewall does not see any registry se2ngs within the virtual registry of the

package, if they exist. It is only the inclusion of the rules in the AppXManifest that maCers. In fact, all of

the vendor packages that I have seen to date that have firewall rules in the AppXManifest do not even

have a virtual registry in the package.

About MSIX Packaging Tool Exclusions

The Microso+ MSIX Packaging Tool generally captures changes made to the file system and registry

during a monitoring session to include in the package. The tool has configura$on se2ngs that contains a

file and a registry list of exclusions.

Ul$mately, firewall rules are wriCen under the registry key

HKLM\System\Services\CurrentControlSet\SharedAccess registry key. When using the installer APIs,

including system dll, newsh, and powerershell APIs, these entries are wriCen by a generic svchost

process.

There is also a poorly understood Service Exclusion list added in 2003 that aCempts to provide control

over changes made by known windows services that had always been excluded by the tool in the past.

When the applica$on installer uses one of the APIs to add the firewall rules, a Process Monitor trace will

show that the rules are wriCen into the Windows Registry by a generic svchost process.

Removing the firewall service from the MMPT configura$on (named MpsSvc) from the MMPT service

exclusion list does not cause capture of these keys.

However, directly wri$ng those keys does allow for capture, even if not the right way to set the rules.

Using PassiveInstall to ensure vendor rules are not missed

Version 3.0 of PassiveInstall provides some PowerShell cmdlets that may be used to overcome this

exclusion by the MMPT.

PassiveInstall is a free opens source tool I originally wrote in 2017. The tool is quite useful when crea$ng

wrapper scripts to customize the vender installer for a variety of things that we want to do during the

repackaging opera$on.

This new release adds two new PowerShell cmdlets that can be added to these wrapper scripts to allow

for the MMPT capture of the vendor firewall rules without you having to know what the rules a

par$cular applica$on adds, or even if it adds any at all.

The first new cmdlet, Get-PassiveFirewallRules, returns a snapshot of the registry rules. You add this

cmdlet twice in your wrapper script, once before the customized install and once a+er.

The second new cmdlet, Redo-PassiveNewFirewallRules is then added a+er that. It uses the two

snapshots to determine any new rules that were added, and will rewrite the registry values in a way that

the MMPT will capture those rules into the virtual registry.

Here is the example from Get-Help on the cmdlets:

Unfortunately, the MMPT will s$ll not write those rules into the AppXManifest file, but we will address

this in the TMEditX Editor post-processing.

Using TMEditX Editor for Post-processing

Repackaging into MSIX usually involves post-processing the captured package in order to obtain

complete compa$bility. Because we previously did not see the MMPT capture the firewall rules, we

never needed a fixup for adding the rules into the AppXManifest.

TMEditX Editor is my licensed so+ware to fix up those packages, filled with a package analyzer that offers

automa$c and manual fixing to your packages, along with a full editor. Version 7.1 adds in a new op$on

to control package firewall rules automa$cally.

Tool Configura�on

The op$on is controlled in the op$ons tab of the tool:

This op$on provides the ability to fix firewall rules whichever way you want:

• Opt-in if you want rules detected in the virtual registry to be added to the AppXManifest file so

that they are effec$ve.

• Out-out if you want rules detected in the AppXManifest file to be removed. Remember that

vendor provided packages might have these rules.

In addi$on to the configura$on op$on, the tool has a pair of command line op$ons to override the

configura$on se2ng, /AutoAddFirewallRules and /AutoRemoveFirewallRules. These may be useful in

automated package fixing scripts.

Analysis

The package analysis support serves to let you know that the package has firewall rules and what they

are. If you want to control these via policy, you need to be aware that the installer added them.

Opt-in Analyis

For the Opt-in se2ng, if the package have the virtual registry se2ngs but they are not in the

AppXManifest, they appear in a Recommended fixup like this:

Opt-out Analysis

For the Opt-out se2ng, if the package has entries in the AppXManifest, they appear in a Recommended

fixup like this:

Summary

IT Desktop Engineering can now have informa$on about, and control over applica$on firewall rules

added by both tradi$onal applica$on installers and vendor pre-packaged MSIX packages.

About

Tim Mangan leads the technical side at TMurgent Technologies, LLP. TMurgent creates research oriented

papers such as this for the technical communi$es to beCer understand Microso+ technologies. Whether

to repackage applica$ons, or build your own tooling around Microso+, check out our white papers at

TMurgent.com

